1. \(\begin{align*}
& X = 0.5 \text{m} \\
& m = 5 \text{kg} \\
& d = 3 \text{m} \\
& \theta = 30^\circ \\
& \mu = 0.2
\end{align*} \)

(a) What is the \(\mu \) required to make this scenario possible?

(b) F.B.D. at bottom after release.

(c) If \(\mu = 0 \) \(\frac{1}{2} \) at top when at rest. What is \(x \) if \(k = 300 \text{N/m} \)?

2. \(\begin{align*}
& m_1 = 8 \text{kg} \\
& m_2 = 3 \text{kg}
\end{align*} \)

(a) Find \(\mu \) for \(\nu = 20\% \).

(b) \(\ddot{a}_1 \) and \(\ddot{a}_2 \) if \(\mu = 0 \).

(c) \(d \) after 2 sec. if \(\mu = 0 \).