a: displacement in \(x \) from \(A \) =

\[x = 0.5 \]

b: \(W_f = \) (on incline)

c: \(W_f = \) (on flat surface)

\(k = 600 \text{ N/m} \)

\(\dot{r} = 2 \text{ kg} \)

\(3 \text{ m} \)

\(60^\circ \)

\(\mu = 0.3 \)

\(\mu = 0.3 \)

\(\text{flat surface} \)

\(\text{given:} \quad W_{spring} = \frac{1}{2} k x^2 = \frac{1}{2} m v^2 \)
b: \(W_f = \) (on incline)

\[k = 600 \text{ N/m} \]

\[W_{\text{spring}} = \frac{1}{2} k x^2 = \frac{1}{2} Mv^2 \]

\[W_f = v_f^2 - 2ad \]

\[F_{\text{net}} = F_f = \mu F_n = \mu mg \]

\[\text{displacement in } x \text{ from } A = \]

\[2 \text{ kg.} \]

\[x = 0.5 \]

\[\mu = 0 \]

\[u = 0.3 \]

\[\theta = 60^\circ \]